在线客服: 点击这里给我发消息  新用户使用步骤:会员注册→充值→重新登入→进入资源
标题:Palmitoylation as a Signal for Delivery
时间:2020-07-31 10:04:26
DOI:10.1007/978-981-15-3266-5_16
PMID:32185719
大小:10153 kb
页数:658 PAGES
下载: 点击下载
预览:

浏览器不支持嵌入PDF阅读,打开新页面在线阅读

目录:
  • Contents
  • Contributors
  • 1 Introduction
    • References
  • 2 Molecular and Cellular Functions of CTLA-4
    • 2.1 T-Cell Costimulation and Costimulatory Molecules
      • 2.1.1 Two-Signal Model of CD4+ T-Cell Activation
      • 2.1.2 Costimulatory and Co-inhibitory Molecules
    • 2.2 Inhibitory Function of CTLA-4
      • 2.2.1 Predominant Binding of CTLA-4 to CD80 and CD86
      • 2.2.2 CTLA-4-Mediated Trans-endocytosis of CD80 and CD86
      • 2.2.3 Direct Tolerogenic Effects of CTLA-4 on the Interacting Cell
    • 2.3 Role of CTLA-4 in Immune Homeostasis and Disease
      • 2.3.1 CTLA-4 Enrichment in Autoimmune Diseases
      • 2.3.2 CTLA-4 Blockage as Immunotherapy
    • 2.4 Conclusions
    • References
  • 3 Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond
    • 3.1 Introduction
    • 3.2 PD-1/PD-L1 Signaling Overview
    • 3.3 Expression and Regulation of PD-1
    • 3.4 Expression and Regulation of PD-L1 and PD-L2
      • 3.4.1 Primary Regulation of PD-L1
      • 3.4.2 Immune Induction of PD-L1 as a Secondary Mechanism
    • 3.5 PD-1/PD-L1 Pathway in Cancer
    • 3.6 The Future of Immune Checkpoint Therapy
    • References
  • 4 Discovery of New Immune Checkpoints: Family Grows Up
    • 4.1 Introduction
    • 4.2 Co-stimulatory Targets
      • 4.2.1 4-1BB (CD137) and 4-1BBL (CD137L)
      • 4.2.2 GITR and GITRL
      • 4.2.3 OX40 and OX40L
    • 4.3 Inhibitory Targets
      • 4.3.1 VISTA (B7-H5)
      • 4.3.2 LAG-3
      • 4.3.3 TIM-3
      • 4.3.4 TIGIT
    • 4.4 Conclusion
    • References
  • 5 Mechanisms of Resistance to Checkpoint Blockade Therapy
    • 5.1 Introduction
    • 5.2 Current Status of Immune Checkpoint Blockade Therapy in Clinical Practice
      • 5.2.1 Clinical Application of FDA Approved Checkpoint Blockades
      • 5.2.2 Ongoing Trials and Clinical Responses of Checkpoint Blockades
    • 5.3 Resistance Mechanisms to Immune Checkpoint Blockades in Cancer
      • 5.3.1 Tumor-Derived Resistance
      • 5.3.2 T Cell-Based Resistance
      • 5.3.3 Tumor Microenvironment-Determined Resistance
    • 5.4 Novel Strategies to Overcome Resistance to Immune Checkpoint Inhibitor
      • 5.4.1 Enhancing Antigen Procession and Presentation
      • 5.4.2 Strengthen the Function and Infiltration of T Cells
      • 5.4.3 Undermining Immunosuppression Microenvironment
      • 5.4.4 Convert a ‘‘Cold’’ Microenvironment to a ‘‘Hot’’ One
    • 5.5 Future Prospects of Immune Checkpoint Blockade Therapy
    • References
  • 6 Molecular Events Behind Adverse Effects
    • 6.1 Adverse Effects Induced by Immune Checkpoint Blockade
      • 6.1.1 Overview of Immune-Related Adverse Effects (IrAEs) Induced by Anti-CTLA-4 and Anti-PD-1/PD-L1
      • 6.1.2 Clinical Significance of Ameliorating IrAEs During Immune Checkpoint Blockade
    • 6.2 The Role of Microbiota in Immune Checkpoint Blockade-Related IrAEs
      • 6.2.1 Microbiota Changes During Immune Checkpoint Blockade Therapy
      • 6.2.2 Correlation of Microbiota Status and Severity of IrAEs
    • 6.3 Interaction Between Immune System and Microbiota Under Immune Checkpoint Blockade Condition
      • 6.3.1 Overview of Effects of Immune System on Microbiota Community
      • 6.3.2 Effector Strain-Induced Global Microbiota Change Under Immune Checkpoint Blockade
    • 6.4 Regulatory T Cell and Its Metabolism Under Immune Checkpoint Blockade Condition
      • 6.4.1 Overview of Treg Function and Metabolism
      • 6.4.2 Treg Function and Metabolism Change in Immune Checkpoint Blockade Condition
      • 6.4.3 Treg’s Role in Ameliorating Gut Inflammation Under Immune Checkpoint Blockade Condition
    • 6.5 T Cell Trafficking and Its Effect Under Immune Checkpoint Blockade Condition
      • 6.5.1 Overview of T Cell Gut Homing
      • 6.5.2 Effects of Traffic-Blocking Antibody in Immune Checkpoint Blockade Condition
    • 6.6 Conclusions
    • References
  • 7 Rational Discovery of Response Biomarkers: Candidate Prognostic Factors and Biomarkers for Checkpoint Inhibitor-Based Immunotherapy
    • 7.1 Introductions
    • 7.2 Tumor Autonomous Profile
      • 7.2.1 PDL1 Expression
      • 7.2.2 Tumor Mutational Loads and Neoantigen
      • 7.2.3 Mismatch Repair Deficiency and Microsatellite Instability
      • 7.2.4 Somatic Copy Number Alterations (SCNA), Structure Variations (SV), and Aneuploidy
      • 7.2.5 Specific Gene Mutations
    • 7.3 Tumor Microenvironment
    • 7.4 Systemic Noninvasive Markers
    • 7.5 Gut Microbiome
    • 7.6 Host-Related Factors and Clinical Features
      • 7.6.1 HLA Class I Molecules and T Cell Receptor
      • 7.6.2 Age, Gender, and Diet
      • 7.6.3 Viral Infections
    • 7.7 Conclusions
    • References
  • 8 Spatiotemporal Changes in Checkpoint Molecule Expression
    • 8.1 PD-L1
      • 8.1.1 Frequency of PD-L1 Expression by Tumor Site and Stage
      • 8.1.2 Inter-tumoral Heterogeneity of PD-L1 Expression
      • 8.1.3 Longitudinal Change of PD-L1 Expression After Treatment Intervention
      • 8.1.4 Factors Influencing the Pathology Assessment Concordance
    • 8.2 PD-L2
    • 8.3 Others Checkpoint Inhibitors
      • 8.3.1 CTLA-4
      • 8.3.2 B7-H3
      • 8.3.3 LAG-3
    • References
  • 9 Functions of Immune Checkpoint Molecules Beyond Immune Evasion
    • 9.1 Introduction
    • 9.2 PD-L1
      • 9.2.1 Epithelial–Mesenchymal Transition (EMT)
      • 9.2.2 Acquisition Tumor-Initiating Potential and Increased Proliferation
      • 9.2.3 Resistance to Antitumor Drugs/Apoptosis
      • 9.2.4 Protection from DNA Damage
      • 9.2.5 Switch to Glycolytic Metabolism
    • 9.3 PD-1
    • 9.4 B7-H3
      • 9.4.1 B7-H3 in Migration and Invasion
      • 9.4.2 B7-H3 in Cell Proliferation
      • 9.4.3 B7-H3 in Drug Resistance
      • 9.4.4 B7-H3 in Angiogenesis
      • 9.4.5 B7-H3 in Glycolysis
    • 9.5 B7-H4
    • 9.6 LILRB1
    • 9.7 LILRB2
      • 9.7.1 LILRB2 in Physiological Function
      • 9.7.2 LILRB2 in Malignant Tumor Cell
    • 9.8 TIM3
    • 9.9 CD47
    • 9.10 CD137
    • 9.11 CD70
    • 9.12 Conclusion
    • References
  • 10 Genetic Alterations and Checkpoint Expression: Mechanisms and Models for Drug Discovery
    • 10.1 Genomic Aberrations, Cancer Neoantigens, and Immune Evasion
      • 10.1.1 Genomic Abnormalities in Cancer Cells
      • 10.1.2 Neoantigens Derived from Genomic Abnormalities
      • 10.1.3 Tumor Immune Escape
    • 10.2 Regulation of Checkpoint Expression via Mutations in Oncogenic Signaling Pathways
      • 10.2.1 PI3K/Akt/mTOR Pathway
      • 10.2.2 Ras/Raf/MEK/ERK Pathway
      • 10.2.3 JAK/STAT Pathway
    • 10.3 Regulation of Checkpoint Expression via Chromosomal Aberration
      • 10.3.1 Novel Checkpoints Transcripts and Proteins Created by Gene Fusion
      • 10.3.2 Gene Amplification and Polysomy Affect Checkpoints Expression
    • 10.4 Preclinical Mouse Models for Checkpoint Mechanistic Studies and Immunotherapy Evaluations
      • 10.4.1 Spontaneous and Induced Mouse Tumor Models
      • 10.4.2 Genetically Engineered Mouse Models (GEMM)
      • 10.4.3 Tumor Cell Transplant Models
      • 10.4.4 Human Immune System Mouse Models
    • 10.5 Conclusion and Perspective
    • References
  • 11 Regulations on Messenger RNA: Wires and Nodes
    • 11.1 Basic Gene Expression Mechanism
    • 11.2 Transcriptional Regulation
      • 11.2.1 ICP Regulated by Transcription Factors
    • 11.3 Alternative Splicing
      • 11.3.1 Mechanism Overview
      • 11.3.2 ICP mRNA Regulated by Alternative Splicing
    • 11.4 miRNA
      • 11.4.1 miRNA Biogenesis and Mode of Action
      • 11.4.2 ICP Regulated by miRNAs
    • 11.5 mRNA Stability
      • 11.5.1 ICP Regulated by AU-Rich Element-Binding Proteins
    • 11.6 LncRNA
      • 11.6.1 ICP Regulated by LncRNAs
    • 11.7 RNA-Based Therapeutic Strategies Targeting ICP mRNA Maturation
      • 11.7.1 Down-Regulation of ICP mRNA by RNA-Based Therapeutics
      • 11.7.2 Translation Inhibition of ICP mRNA by RNA-Based Therapeutics
      • 11.7.3 Alternative Splicing Reprogramming of ICP mRNA by RNA-Based Therapeutic
      • 11.7.4 RNA-Based Therapeutic Strategies Targeting miRNA Regulating ICP mRNA
    • 11.8 Conclusions
    • References
  • 12 Folded or Degraded in Endoplasmic Reticulum
    • 12.1 Introduction
    • 12.2 Protein Folding in the Endoplasmic Reticulum
      • 12.2.1 Signal Sequence Cleavage
      • 12.2.2 Protein Glycosylation
      • 12.2.3 ER Chaperones
      • 12.2.4 ER Folding Enzymes
      • 12.2.5 ICP Protein-Related Folding Process
    • 12.3 Protein Export from the ER
      • 12.3.1 Cargo Assembly and Egress
      • 12.3.2 Cargo Transport
    • 12.4 Proteostasis and Quality Control in the ER
      • 12.4.1 ER Stress
      • 12.4.2 Unfolded Protein Response (UPR)
      • 12.4.3 ERAD
      • 12.4.4 ER-to-Lysosomes-Associated Degradation (ERLAD)
      • 12.4.5 ICP Protein-Related ER Quality Control
    • 12.5 Other ICP Protein-Related Regulations in the ER
    • 12.6 Potential Novel Therapies
    • 12.7 Conclusions
    • References
  • 13 Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate
    • 13.1 Introduction
    • 13.2 Ubiquitination of Membrane Proteins
      • 13.2.1 EGFR
      • 13.2.2 GPCR (G Protein Coupled Receptors)
    • 13.3 The Main Immune Checkpoints
    • 13.4 PD-1/PD-L1
      • 13.4.1 The Poly-Ubiquitination of PD-1
      • 13.4.2 The Poly- and Mono-Ubiquitination of PD-L1
    • 13.5 LAG-3/MHCII
      • 13.5.1 LAG-3
      • 13.5.2 The Poly-Ubiquitination of MHC II
    • 13.6 CTLA-4/CD86/CD80
    • 13.7 CD226/CD112/CD155/Tigit
    • 13.8 CD47/SIRPα
    • 13.9 Conclusion
    • References
  • 14 Lysosome as the Black Hole for Checkpoint Molecules
    • 14.1 Introduction
      • 14.1.1 History of Lysosomes
      • 14.1.2 Functions of Lysosome
    • 14.2 Lysosomes Play a Crucial Role in Cancer Cell Biology
      • 14.2.1 Lysosomes Contribute to Cancer Cell Proliferation, Maintaining Genome Stability, and Providing Energy and Nutrient
      • 14.2.2 Lysosomes Are Involved in Tumor Metastasis, Invasion, and Angiogenesis
      • 14.2.3 Lysosomes Influence Tumor Microenvironment
    • 14.3 Lysosomes and Cell Immunity
    • 14.4 Lysosomal Posttranslational Regulation of Immune Checkpoints
      • 14.4.1 PD1/PD-L1 PD-L2
      • 14.4.2 CD28 CTLA-4/CD80 CD86
      • 14.4.3 TIM-3/Galectin-9
      • 14.4.4 CD70
      • 14.4.5 CD200
      • 14.4.6 CD47
      • 14.4.7 CD40
      • 14.4.8 TL1A/DR3
      • 14.4.9 BTLA
      • 14.4.10 MHC Class II/ LAG-3/CD4
    • 14.5 Targeting Lysosomes for Tumor Treatment and Cancer Immunotherapy
      • 14.5.1 Inhibitors of Lysosomes
      • 14.5.2 Lysosomal Inhibitor or Combining with Other Drugs for Cancer Therapy
    • 14.6 Conclusion
    • References
  • 15 Phosphorylation: A Fast Switch For Checkpoint Signaling
    • 15.1 Introduction
      • 15.1.1 Phosphorylation as a Modification
      • 15.1.2 Implications of Phosphorylation in Cancer
      • 15.1.3 Phosphorylation and Coinhibitory Receptors
    • 15.2 Phosphorylation Modulates Interaction Between Cancer Cells and Immune Cells
      • 15.2.1 Phosphorylation Alters Cancer Cells’ Immunophenotype and Phenotype
      • 15.2.2 Phosphorylation Regulates Immune Cells Behaviors
    • 15.3 Phosphorylation of Checkpoint Related Factors
      • 15.3.1 Phosphorylation and Immune Cell Receptor Signaling
      • 15.3.2 Phosphorylation in Signal Transduction Pathways
      • 15.3.3 STAT: Multifunctional Factor Phosphorylated to Regulate Immune Response
      • 15.3.4 EGFR Phosphorylation Promotes PD-L1 Expression
      • 15.3.5 PD-L1 Expression Is Regulated Through Phosphorylation of MTOR Pathways
      • 15.3.6 Phosphorylation of Cell Cycle Regulators and Immune Modulation
      • 15.3.7 Phosphorylation of Some Pathways Regulates PD-L1 Expression at RNA Level
    • 15.4 Switches of PD-1/PD-L1: Phosphorylation and More
      • 15.4.1 Phosphorylation of PD-1/PD-L1 Determines
      • 15.4.2 Other Modifications Closely Related to Phosphorylation
    • 15.5 Phosphorylation and CTLA-4: Where and How?
      • 15.5.1 Tyrosine Phosphorylation of CTLA-4 and Downstream Events
      • 15.5.2 Other Pathways Phosphorylated that Regulates CTLA-4
    • 15.6 Phosphorylation and Other Immune Checkpoints
      • 15.6.1 T Cell Immunoglobulin Mucin 3 (TIM-3)
      • 15.6.2 Killer Cell Inhibitory Receptors (KIRs)
      • 15.6.3 CD137 (4-1BB)
      • 15.6.4 Glucocorticoid-Induced Tumor Necrosis Factor Receptor (GITR)
      • 15.6.5 Lymphocyte Activation Gene-3 (LAG-3; CD223)
      • 15.6.6 Programmed Death-Ligand 2 (PD-L2)
      • 15.6.7 B and T Lymphocyte Attenuator (BTLA)
      • 15.6.8 V-Domain Immunoglobulin (Ig) Suppressor of T Cell Activation (VISTA)
    • 15.7 Discussion
    • References
  • 16 Palmitoylation as a Signal for Delivery
    • 16.1 Introduction
      • 16.1.1 Lipid Post-translational Modifications
      • 16.1.2 Palmitoylation
      • 16.1.3 Palmitoylation in Cancer
    • 16.2 Palmitoylation Regulates Protein Trafficking and Localization
      • 16.2.1 Routes of Protein Navigation and Distribution
      • 16.2.2 Typical Protein Trafficking Directed by Palmitoylation
    • 16.3 Signaling Transduction and Interference by Palmitoylation
      • 16.3.1 Palmitoylation of EGFR Affects Signaling Activation
      • 16.3.2 Wnt Palmitoylation Regulates Downstream Pathways
      • 16.3.3 Hedgehog Pathways Functioned by Palmitoylation
      • 16.3.4 Intracellular Ca2+ Flux Regulated by Palmitoylation
    • 16.4 Protein Interaction and Metabolism Regulated by Palmitoylation
      • 16.4.1 Palmitoylation Regulates Nuclear Activities
      • 16.4.2 Palmitoylation Regulates Protein Structure and Stability
      • 16.4.3 Palmitoylation Regulates Membrane Transportation
    • 16.5 Palmitoylation Concerning Immune Response
      • 16.5.1 Palmitoylation Affects Immune Cell Functions
      • 16.5.2 Palmitoylation Regulates Other Immune Pathways
      • 16.5.3 Palmitoylation of Immune Checkpoints
    • 16.6 Discussion
    • References
  • 17 Methodology for Detecting Protein Palmitoylation
    • 17.1 Mutagenesis
    • 17.2 Antibody-Based Methods
    • 17.3 Prediction Software and Database of Protein Palmitoylation
    • 17.4 “Palmitate-Centric” Approaches
      • 17.4.1 Metabolic Labeling with Radioactive Palmitic Acids
      • 17.4.2 Metabolic Labeling with Non-radioactive Derivatives of Palmitic Acids
    • 17.5 “Cysteine-Centric” Approaches
      • 17.5.1 Acyl-Biotin Exchange
      • 17.5.2 ABE-Derived Methods
    • References
  • 18 Checkpoints Under Traffic Control: From and to Organelles
    • 18.1 Transmembrane Domain Proteins Trafficking and Associated Disorders
      • 18.1.1 Immune Checkpoints and Trafficking of Transmembrane Domain Proteins
      • 18.1.2 TMD Proteins Trafficking and Association with Disorders
    • 18.2 PD1 and PD-L1 Trafficking and Their Implications in Combinatorial Immunotherapy
      • 18.2.1 Introduction to PD1 and PD-L1
      • 18.2.2 PD-L1 Trafficking: From ER to GA
      • 18.2.3 PD-L1 Trafficking: From Cell Membrane to Recycling Endosomes
      • 18.2.4 Huntingtin-Interacting Protein 1-Related (HIP1R) and PD-L1 Trafficking
      • 18.2.5 Exosomal PD-L1
      • 18.2.6 ALIX and PD-L1 Trafficking
      • 18.2.7 The Regulative Role of PolyI: C in CTL Responses and PD-L1 Trafficking
      • 18.2.8 Post-translational Modifications in PD-L1 Trafficking
    • 18.3 Other Immune Checkpoint Trafficking
      • 18.3.1 CTLA-4 Trafficking
      • 18.3.2 LAG-3 Trafficking
      • 18.3.3 KIRs Trafficking
      • 18.3.4 CD94/NKG2A Trafficking
      • 18.3.5 CD70 Trafficking
    • 18.4 Conclusions and Discussions
    • References
  • 19 Exosome and Secretion: Action On?
    • 19.1 The Introduction of Exosome in Cancer Immunology
    • 19.2 The Role of TEX in Cancer Immunology (Detailed in Fig. 19.2)
      • 19.2.1 TEX Suppresses T Cell Functions
      • 19.2.2 Mechanisms of TEX Influencing NK Cells and DCs
      • 19.2.3 Mechanisms of TEX Influencing Macrophages
      • 19.2.4 Other Immune Cell Lineages
    • 19.3 Exosome and Cancer Immune Checkpoints (Fig. 19.3)
      • 19.3.1 Exosomal PD-L1
      • 19.3.2 Soluble Immune Checkpoint Receptors
    • 19.4 Immunocytes-Derived Exosomes in Cancer Immunology
      • 19.4.1 T Cell-Derived Exosomes
      • 19.4.2 NK Cell-Derived Exosomes
      • 19.4.3 DC-Derived Exosomes
      • 19.4.4 Macrophage-Derived Exosomes (MDE)
      • 19.4.5 Other Immunocytes-Derived Exosomes
    • 19.5 Exosome as Biomarker and Vaccine for Cancer Progression
      • 19.5.1 Liquid Biopsy
      • 19.5.2 Exosomal miRNA (Detailed in Table 19.1)
      • 19.5.3 Clinical Potential of Exosomes
    • 19.6 CAF-Derived Exosome
    • 19.7 Conclusions
    • References
  • 20 Macromolecules and Antibody-Based Drugs
    • 20.1 History and Development of Macromolecule Drugs
    • 20.2 Development and Application of Antibody-Related Drugs
      • 20.2.1 Humanization of Antibody Drugs
      • 20.2.2 Antibody–Drug Conjugates (ADCs)
      • 20.2.3 Engineered Antibodies: From IgG to Different Formats Attempt
    • 20.3 Antibody-Based Drugs and Immunotherapy
      • 20.3.1 Innovation and Breakthrough
      • 20.3.2 Immune Checkpoints and Their Antibodies
    • References
  • 21 Mechanisms Inspired Targeting Peptides
    • 21.1 Peptide Biogenesis and Function
    • 21.2 Targeting Peptides Design
      • 21.2.1 Targeting Peptides Design Based on the Protein Structure of Immune Checkpoints
      • 21.2.2 Targeting Peptides Design Based on Protein Interaction in ICP
    • 21.3 Targeting Peptides Selection Strategies
      • 21.3.1 Biological Display System
      • 21.3.2 Synthesis Peptide Library and Peptide Microarray
    • 21.4 ICP Regulated by Targeting Peptide Modulation of Tumor Microenvironments
      • 21.4.1 Peptides Targeting Tumor-Associated Macrophages
      • 21.4.2 Peptides Targeting Tumor Invasion CD4+ T Cells
    • 21.5 Peptides Targeting and Regulating ICP Pathways
      • 21.5.1 Peptides Targeting PD1/PDL1 Pathway
      • 21.5.2 Peptides Targeting CTLA4 Pathway
    • 21.6 Conclusion
    • References
  • 22 Small Molecular Immune Modulators as Anticancer Agents
    • 22.1 Introduction
    • 22.2 Small-Molecule Immune Checkpoint Inhibitors
      • 22.2.1 PD-1/PD-L1 Inhibitors
      • 22.2.2 Adenosine Pathway (A2A, A2B, CD39, CD73)
      • 22.2.3 VISTA
      • 22.2.4 TIM-3
    • 22.3 Small Molecules Enhance Cellular Immunity
      • 22.3.1 Kynurenine Pathway (IDO/TDO)
      • 22.3.2 STING Agonists
      • 22.3.3 Toll-Like Receptor (TLR) Agonists
      • 22.3.4 OX40
      • 22.3.5 GSK-3 Inhibitors
    • 22.4 Tumor Microenvironment Modulators
      • 22.4.1 CSF-1R Inhibitors
      • 22.4.2 TGF-β and ALK5
      • 22.4.3 CXCR Antagonists
      • 22.4.4 CCR Antagonists
    • 22.5 Epigenetic Regulation of Immune Response
      • 22.5.1 HDAC Inhibitors
      • 22.5.2 BET
      • 22.5.3 EZH2 Inhibitors
    • 22.6 Other Anticancer Targets That Involve in Tumor Immune Modulation
      • 22.6.1 VEGFR Inhibitors
      • 22.6.2 PI3K Inhibitors
      • 22.6.3 CDK4/6 Inhibitors
      • 22.6.4 MEK and BRAF Inhibitors Combination with Immunotherapy
      • 22.6.5 PARP Inhibitors and Tumor Microenvironment
    • 22.7 Conclusions and Future Perspectives
    • References
  • 23 Therapeutic Development of Immune Checkpoint Inhibitors
    • 23.1 Introduction
    • 23.2 Therapeutic Development of CTLA4 Blockade
      • 23.2.1 The CTLA-4 Immune Checkpoint
      • 23.2.2 Immune Checkpoint Inhibitors Targeting CTLA-4
    • 23.3 Therapeutic Development of PD-1/PD-L1 Blockade
      • 23.3.1 The PD-1/PD-L1 Immune Checkpoint
      • 23.3.2 Immune Checkpoint Inhibitors Targeting PD-1/PD-L1
    • 23.4 Therapeutic Development of Combined Blockade of CTLA4 and PD-1
    • 23.5 Therapeutic Development of Next Generation Immune Checkpoint Blockade
    • 23.6 Current Challenges of Immune Checkpoint Blockade Therapy in Cancer
    • 23.7 Conclusion
    • References
  • 24 Concluding Remarks
    • References

本页内容由网络收集而来,版权归原创者所有,如有侵权请及时联系