在线客服: 点击这里给我发消息  新用户使用步骤:会员注册→充值→重新登入→进入资源
标题:A sequential Monte Carlo probability hypothesis density algorithm for multitarget track-before-detect
时间:2020-01-15 13:10:02
DOI:10.1117/12.618438
作者:PUNITHAKUMAR;KIRUBARAJAN;SINHA
关键词:Acquisition tracking and pointing;Algorithms;Computer programming;Hough transforms;Modeling;Nonlinear filtering;Signal to noise ratio;Simulations
摘要:In this paper, we present a recursive track-before-detect (TBD) algorithm based on the Probability Hypothesis Density (PHD) filter for multitarget tracking. TBD algorithms are better suited over standard target tracking methods for tracking dim targets in heavy clutter and noise. Classical target tracking, where the measurements are pre-processed at each time step before passing them to the tracking filter results in information loss, which is very damaging if the target signal-to-noise ratio is low. However, in TBD the tracking filter operates directly on the raw measurements at the expense of added computational burden. The development of a recursive TBD algorithm reduces the computational burden over conventional TBD methods, namely, Hough transform, dynamic programming, etc. The TBD is a hard nonlinear non-Gaussian problem even for single target scenarios. Recent advances in Sequential Monte Carlo (SMC) based nonlinear filtering make multitarget TBD feasible. However, the current implementations use a modeling setup to accommodate the varying number of targets where a multiple model SMC based TBD approach is used to solve the problem conditioned on the model, i.e., number of targets. The PHD filter, which propagates only the first-order statistical moment (or the PHD) of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems with varying number of targets. We propose a PHD filter based TBD so that there is no assumption to be made on the number of targets. Simulation results are presented to show the effectiveness of the proposed filter in tracking multiple weak targets.
大小:541 kb
下载: 点击下载
预览:

浏览器不支持嵌入PDF阅读,打开新页面在线阅读

本页内容由网络收集而来,版权归原创者所有,如有侵权请及时联系