在线客服: 点击这里给我发消息  新用户使用步骤:会员注册→充值→重新登入→进入资源
标题:Predictability analysis of absence seizures with permutation entropy.
时间:2019-11-19 21:25:06
DOI:10.1016/j.eplepsyres.2007.08.002
PMID:17870413
作者:Xiaoli Li; Gaoxian Ouyang; Douglas A. Richards
关键词:Absence seizure; Predictions; Permutation entropy; Sample entropy; Genetic absence epilepsy rats
出版源: Epilepsy Research ,77 (1) :70-74
摘要:In this study, we investigate permutation entropy as a tool to predict the absence seizures of genetic absence epilepsy rats from Strasbourg (GAERS) by using EEG recordings. The results show that permutation entropy can track the dynamical changes of EEG data, so as to describe transient dynamics prior to the absence seizures. Experiments demonstrate that permutation entropy can successfully detect pre-seizure state in 169 out of 314 seizures from 28 rats and the average anticipation time of permutation entropy is around 4.9 s. These findings could shed new light on the mechanism of absence seizure. In comparison with results of sample entropy, permutation entropy is better able to predict absence seizures.
大小:395 kb
下载: 点击下载
预览:

浏览器不支持嵌入PDF阅读,打开新页面在线阅读

目录:
  • Predictability analysis of absence seizures with permutation entropy
    • Introduction
    • Materials and methods
      • Animal experiments and EEG recordings
      • Sample entropy and permutation entropy
      • Determination of onset and selection of EEG data
      • Prediction of absence seizures
    • Results
    • Discussion
    • Acknowledgement
    • References

本页内容由网络收集而来,版权归原创者所有,如有侵权请及时联系